UNCLASSIFIED

a 422810

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, specli-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto,







L
F

(S 739 S0

/

\

@OPTIMAL INVENTORY POLICY 5

& o)lz Kenneth Arrow ,
/ Theodore Harris P
~  Jacob Marschak ,

P-189

Revised \/

16 November 1950 j

o

* SANTA MONICA *+ CALIFORNIA

e RAND e




5 September 1950

Revised 16 November 1950
P-189

1. Introduction

1{A We propose to outline a method for deriving optimal
rules for inventory policy. The problem of inventories exists
not only for business enterprises but also for non-profit
agéncies such as governmental establishments and their various
branches. DMoreover, the concept of inventories can be gener—
alized so &as to include not only goods but also disposable
reserves of manpower us well as various stand—by devices. 4lso,
while inventories of finished goods present the simplest problem,
the concept can be extended to goods which can be transformed,
at & Lost,; into one or more kinds of finished goods if and when
the neec tfor such goods arises., The following notes prepare
the way for a nore general analysis of "flexible planning."

1:B We shall maxke explicit use of the concepts of proba—
bility and utility. Probaoilities enter because at least some
of those variables that are not controlled by the policymaker:
are rancom variables. Of these, the quantity demanded (from
him) per unit of time is the principal one. J3ome other variables,
such as the purchase price, or the time required for the fulfill-—
ment of an order ("pipeline time") may also be random, but will
not be considered as such in the present paper.

1:C If the future vicre certain, the policymaker would
deﬁermine the varisavles under his control — for example, the
amounts he orders — in such a way &s to maximize & certain
quantity, celled net utility (or minimize its negative, called

net aanage, or net loss). In enterprises run for profit, the
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- total money profit earned over a long period of time (with

future profits possibly converted into present values by using
& time—discount factor based on some appropriate rate of
interest) is a convenient measure of net utility. accordingly,
most of the existing writings on the inventory contrdl of
business firms make explicit use of the notion of maximum
profit. These writings, though often not too clear in presen—
tation and not developed in detail, do provide, in essence, a
satisfactory solution for the case when &all variables not
controlled by the {irm are known in @cvance with certainty.

1:D The natural extension to the case when at least some
of the non—controlled variables are random variables, is to
maximize the e.pected (actuarial, averare) value of profit, or
of utility. This presupposes the explicit use of the probalility
aistribution of demand (or, uore generally, the joint probability
distrivution of demana, pipeline time, purchase price, and other
non—controlled variables). This uistribution either can be
known in advance, or may have to be estimated with the necessary
precision as the data on demana, etc., are being accumulated,

1:E The random nature of the non—controlled variables is
recognized implicitly in the customary provision for "cushion"
or "safety-margin" stocks. llowever, we have not been able to
find in the btusiness literature an explicit rule of determining
. "cushion stocks" that would seximize expected profit (or minimize

expected loss), given the relevant probability distribution.

-
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1:F Explicit use of a (Poisson) distribution of demand
was made, in a pathbreaking manner, by Thornton C. Fry [6].
This was later developed by Churchill Eisenhart [3] and
apparently also applied by R. H. Wilson [i(J. In this approach,

the recommended rules of action are derived not by prescribing

thet the expected net utility be a maximum but by prescriting

that the probability of stock depletion should have a certain
level. 7This is analogous to the fixing of a "significance level"

by a hypotheses—testing statistician of the pre—wald era. (In

-various writings since 1939, abraham ./ald has suggested choosing

statistical test—procedures so as to minimize the expected loss
to the policymaker.) The choice of the suitable probability of
Stock depletion must ultimately cepend on utility considerctions,
albgit in a hidden tashion. We shall try to make such considera—

tions explicit. (See also 3:E below.)

1:G In "non—profit" organizations utilities other-than

money must be used. as for uncertainty, it is of course always

‘present in non—profit no less than in commercial organizations.

Various orgunizations have their own rules tor taking care of
uncertainty. However, it is not always obvious how these rules
were uefived from coﬁsiderations of utility (e.g., the loss caused
by the inavility of a supplying agency to meet an-urgent recuire—
ment) and from considerations of probability (e.g., the

probability that a requirement will not be met).
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1:H Tq sum up our own approach: the net utility to any
policymaker ié, in generai, a random variable depending on
certain conditions-(i.e., on variables or on relations between
variebles). Somé of these concditions he can control, others he
<cannot. The former are policy mecns (strategies). The non—
controlled conditions are, in general, defined by a joint
probability distriobution of certain variables. LKRational policy
consists in tixing the controlled conditions so as to maximize
the expected value of net utility, gziven the probability distri-—
butign of non—controlled conditions. .Mhen this probability
distriovution cegenerates into a set of non—random variavles we
have the case of "certainty." 1In this limiting case, net utility
itself is & non-random variable, to be maximized by the policy—
maker.

.1:I as already mentioned (in 1:B), at most one of the
non—controlled conditions will ve regarded in the present paper
as a random one: the rate of demand for the policymaker's
product. Other nor—controlled conditions will be regarded as
constants, or as relations with constant parameters: the relation
between storage cost and the cize of industry; the relation
between purchasing price and the size of order ("supply function");
&nc the cost of making an order.

AS to controlled conaitions, we shall assume that the policy—
maker can control only the size of the orders he makes. This
eliminates, for exanmple, such policy means &s the [ixing of the
selling price, or the use of advertising, to influence demand; and

any bargaining with buyer(s) or competitor(s).
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although it would be interesting and useful to broaden the
problem in the various directions just indicated, we believe our
specialized formulation is a workable first approximation. By
regarding the order size as the only controlled conaition, and
the demand a&s the only random non—controlled conditioﬁ, we do
take account of most of the major cuestions that have actually
arisen in the practice of business and nonprofit organizations.*
1:J OSection 2 of the present paper will give the essentials
of the optimal stocx determination under conaitions of certainty.
The remaining sections will treat the uncertainty case, considering
demand as the only random variable. Section 3 discusses a static
model. GSection 4 formulates the mathematical problem for a
simplified dynamic model, for which Section 5 outlines a method
of solution; Section € contains examples: solutions for the
simplified dynamic model are given, assuming specifiic distrivutions
of demend. Possible extensions of this model are briefly defined

in Section 7.

'*Before formulating the problem, a study was iaae of the existing
business literature on inventory control, using freely the
comprehensive bibliography [10] that was compiled by 1. H. whitin
ana Louise B. Hauacx for the Logistics research Project of the
Office of Naval hesearch at the George washington University.
vome-of the avove suggestions, vroadening the problem so as to
embrace the models of perfect and imperfect marxets as discussed
in the academic economic theory, are due to Mr. larkowitsz,

Cowles Commission for Kesearch in Economics.
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2. The Case of Certainty

.2:A Let x be the known constant rate of demand for the
product of the organization, per unit of time. Let the gross
utility (i.e., utility before ceducting cost) obtained by the

organization through satisfying this demand, be

ax + an .
0

We can assume &g = O (this will not influence the solution of
our problem). In this case, if the organization is a commercial
firm, g is the selling price; otherwise g is the value to the
organization of an operation of some kind. _ In general, g is

a function of x; but it will be sufficient, for our purposes,

to assume g constant. Denote by b the purchasing price (in
money' units or utility units) of one unit. Because of the
possible economy ot large scale orcders, b is & non—increasing
function of tre amount oraered: b = b(S), b' < 0, assuming
differentiabiiity. Let K be the cost of handling an order,

regardless of its size. Let z be the stock, and let the cost

of carrying it over one unit of time be .

-

const. + 2cz ,

the constant part being the overhead cost of storage. In general,
the coefficient ¢ may be a function of z, but it will suffice
lere to assume ¢ constant. .

.2:B assume, to begin with, that orders are tulfilled

immediately. Then orders must te made whencver the ctock reaches
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zero: to order earlier would cuuse unnecessary storage cost,
and to order later would cause unsztisfied demand. The amount
ordered must equal the maximum stock, S. The average level of

stock will be S/2; see Figure 1, where ® is the time elapsing

=
1 {\;\;;IK;;;;JR;;;;J_ B
, —>
4] e Time
Fig. 1

between making an order and having the stock completely exhausted.

Clearly S (or ©) is controlled by the policymaker, and

(2.1) S = x8.

We shall first assume that © can teke all real positive values
(but see 2:E). The problem is to choose the optimal S and 6.
Consider a time interval of 6 units, beginning with the ordering
of S units of goods and ending when the stock is exhausted. The
total utility derivecd during this period,apart from & constant

] *
overheaa cost of storage, 1is

aS—bS—2c6(%) - K,

* al Al
We neglect the fact that a part of the overhead cost of storage —
the interest and the amortization charge on stored goods — depends
on the purchasing price b(S); the required wmodification is simple.
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—

+

)
(2.2) ax-—bx—cS—(xK/S){/.

or, per unit of time, by (2.1),

Suppose the future time over which utility is maximized — the
"horizon" — is either infinite or is long enough to be considered,
without great error, as a sequence of an integral number of
periods, of @ units each, with initial stocke at zero. Then

the maximizing of utility over the "horizon" with respect to S

is equivalent to the maximizing of (2.2), or (since g is

independent of S) to minimizing the cost
(2.3) C = xb(S) + ¢S + (xK/S) .

Hence the optimal value of the amount ordered, S = S%, must

satisfy the ecuation
2

(2.4) xb'(S*%) + ¢ = xK/(S*) .
and the inequality
(2.5) b"(8%) > —2[c + xb'(5%)] /5% .,

2:C Wwe shall assume the purchase price function (supply
function) b(S) linear, so that b"™ = G identically and
(<.6) b(S) = bg = byS (say)

with b; > 0. Then by (2.1), (2.3)

(2.7) C = bgx + x(c —’b1x)6 + K/e = C(8), say.
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The optimal re—ordering period & = 6% is

(2.8) : 8% = NK/x(c = byx] .

Note that for ©% to be real and finite, the following constraint
upon the demand, and upon the conditions of storing and purchasing,

must be satisfied:

0< b, <c¢/x .

1

The minimum cost, C*, is by (2.7), (<.&)

(2.9) Ckx = C(g*) = bgx + 24/Kd ,
where
(2.10) d = x(c = byx) >0,

and the positive root is taken. The optimal size of an order is

vy (2.8), (2.1),

(2.11) S = a/Kx/({c — b1x]) .

Hence; as should be expected, the optimal order size, and therefore
the optimal oraering interval is the larger, the larger the cost
K of hanaling an order, the smaller the unit storage cost ¢ and the
larger the effect by of the size of order upon the unit price.

We believe this is, in essence, the solution advanced by
R. H. Wilson {10}, formerly of the Bell Telephone Company; and also

by other writers; see [1].
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2:D If we now introduce a constant "pipeline time," T™> o,
elapsing between order and delivery, this will not affect S* or
&%, but the time of issuing the order will be shifted T time
units ahead. The order will be issued when the stock is reduced,
not to zero, but to xT units.

2:E The policymaker may not have full control of the length
of the time interval between any two successive orders. Trans—
portation schedules or considerations of administrative convenience
may ove such as to make ordering impossible at intervals of length
other than, say, e } ©%. For example, 90 may be one business
day or week; or 90 may be the period between two visits of a mail—
boat to an island depot. Orders of positive size may be spaced
only at intervals of length o = me°, where m is a positive integer.
We have to find the value m = m' that will minimize the cost (2.3).
The corresponding optimal length of interval between two non—zero
orders vwill be denoted by 8', and the optimal order size by S',

The optimal set (m', ©', S') is unicue since, as previously

indiceted in 2:B, it cuan never pay to possess a non—zero stock at

a time.when reordering takes place (or, more generally, T time
units after the reordering, T > 0; see 2:D). Hence, at a reordering
time, the situation is always the same as that at the beginning

of the entire process. Therefore, there is no possivility of
gaiping by haviné a variable ' or S'.

To find the optimal values for m, &, S, note that (2.7) is
& continuous function of 9, with a unigue minimum at ©® = 6% when

® is not restricted.
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: Suppose first that the permissible interval length e° > %,
and therefore the interval length between the successive non—zero
orders, 6 = me° > mé*. Then (2.7) is smallest whenm = m' = 1,
Hence 8' = 90, St = xGo. For example, if 8% = 14 days but orders
can be placed oniy every 8° = 30 days, then optim&l reordering
period ®9' = 30 days (not 60 or 90, etc.). Sﬁppose next that
90 < 6%, and that the ratio n = G*/Go is an integer, n > t. Then
obviously (<.3) is minimized at ©' = 8% = n@°; that is, m' = n,
S' = Sk, (For example, if % = 14, 8° = 7 days, then orders will
be issued every ©' = 1, days.) Finally, if 0° < ©* but the ratio
n is not an integer, consider the integer n, n < n < n+1. Then
m' =norn+1, i.e., the optimal length, &', of the interval
between two successive non—zero orders will be either n@ of
(n+1)8%, whichever leads to a smaller cost (2.3). (For example,
if o% = 11, 8° = 7, then 8' = 7 or 14.)

2:F As an important generalizaetion of the case of fixed
inter;als between (positive or zero) successive orders, one would
have to consider the case when orders can be made at any time,
but at varying hanaling cost K. Let n = KO for the instants

0, ***, and K = k¥ > K° for all other instants. (This

o, €°, 20
degenerates into the case of sub—section 2:E when K* is infinited)
Let us refer to periods which are multiples of 8° as
scheduled periods, the others as non—scheduled periods. If we
consider only the latter, then by (2.9), the minimum attainable

cost is box + 2 VK . For scheduled periods the cost, by (<.7),
(2.10), is bgx + d& + (K°/e). The range of values of 8 for which

&
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the last ‘expression is not greater than the minimum cost attainable

with a non—scheduled period is, then,

do + (K°/8) < 2AK*d ,

or,

e o
d“ - 24K'da 6 + K <O,

or,
2 2
(2.12) d ('Jx* - 4k* - KO) <ov<d (4/}(* + Nk - k7).

Therefore, a scheduled period will be used if a multiple of 8°

falls in the interval (2.12); otherwise, the optimal non—scheduled
period,v;:7g, is used. Replacing © by ne° in (2.12) and dividing
through by e° yields the following condition for using a scheduled

period: The intervel from
1 ~1
(2.13) a ° (/\Ix' ~ N - K)/e° to a 2 ('fx_" v ok - 50)/ ¢

should éontain & positive integer.

Clearly, a sulficient condition is that the interval (2.13)
contain the number 1, whiie a necessary concition is that the
upper limit should be at least 1. Suppose the upper limit is at
leust 1 und at the same time at least twice the lower limit. Then
either 1 belongs to the interval (2.13), in which case a scheduled
period should be used, or 1 lies below the lower limit. Let n be
the largest integer below the-lower limit of (2.13); then the

integer 2n lies below the upper limit and above the lower, so that
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again the interval (2.13) contains a positive.integer.
The condition th&t the upper limit be at least twice the

lower is that
2 (/ﬁ(_* - Nx*- _x°) < -A/?’HVK"— £,

which is equivalent to K+/K° > 9/8., If

i
(2.14) | K*/k° > 9/8 and HK* + VE* = ° > 62 |

then a scheduled interval should be used.

(2.14) is a sufficient condition while (2.13) is both
necessary and sufficient. :

2:G In this énd the next two sub—sections, we conclude the
discussion of the case of a certainty by remarks on the problem
of "aggregation." Let there be several commodities, numbered
i=1,2, ***, and characterized by, generally, different storage
cost coefficients ¢y and different purchase price functions bi‘
Let us first assume that the cost, K, of handling an order does
not depend on the size or composition of the order. The problem
is to find optimal ordering intervals for the several commnodities,
possibly arranging the commodities into subsets so that all
members of a subset are ordered simultaneously. }

. Consider the set of the first q commodities. Assuming &
linear purchase price function for egch commodity and applying
the notations of  sub—section 2:C, with a commodity subscript i

where necessary, compare the :following two costs (per unit of

time): 1) the minimum cost, ﬁt C; of ordering, buying and
= :
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stor;ng the q commodities, when each commodity is reordered at
intervals of length Gz chosen so as to minimize Ci; 2) the

minimum cost C of ordering, buying and storing the commodities
when all are ordered at the same time at intervals of length 8.

We heve by (2.8), (2.9), (2.10),

*
L&l 6y =Ky, 4 = xyley=byyxy) >0, 1=1,000a,

(2.16) > ¢l = 3 byx, + 2 S AT,

where the summation is from 1 to q, and every root is positive.

On the other hand, © = © minimizes the expression
2 ibgyX; * © ‘Z d; + K/e ,

analogous ta the right—hand side of (2.7), with >_ d; replacing d.

Hence

(2.17) 6§ =Wk/> 4, ;

(2.18) C =23 by;x; + 2= Kd;

- *
the root being positive. C is always smaller than EZ,Ci’ since
the scuare of > #/Kd; exceeds the square of N= Kd; by
2221{'\/31&'5 , i ¥ 3,
1 J

which.is positive. Thus, if K does not depend on the composition

of the order, it is preferable to order all q commodities of the
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considered subset at the same time, provided the common period
length is determined as iﬂ (2.17). Ihis is true for any q, and
therefore also for the set of all commodities.

2:H The situation becomes cifferent if the cost of handling
the order depends on its composition. Llet, for example, K(i) be

the cost of handling an order (of any size) for the it’h

commodity,
K(i, j) the cost of handling an order for any quantities of
comnodities i and Jj, etc. ven if we still maintain the assumption
that\g&j) = K(2) = +++ = K, the advantuge of aggregation may
disgppe;;\if we a0 not maintain any_mére that, for the given set

of q com .odities, also K = K(1, 2, «++, g). (For example, the
handling of an order requiring the services of an aircraft expert
as well as a canned food specialist may be much more expensive

than the ordering of these commodities separately.) We have, then,
in fact, to compare #X 2 #d; with V/K(1, -<+,7q) 43 d, , or

2
KCE:q/di) with K(1, 2, <+, q) > di' nggregation is advantageous

if the right—hand expression is smaller than the corresponding left—

hand cne, i.e., when

(2.18) K(1, 2, k q) < <i=1

In particular, if d; = dj = d for all i, j, the above condition

pecomes

2
K, 2, "*y a) _a-d_ .
g K qd qH
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i.e., it is required that the cost of ordering the q commodities
separately should be léss than g times the cost of ordering them
joihtly. In the general case di % dj’ i, j=1, **+, q, the
condition (2.18) can be interpreted as follows. Define ey = qﬂiz.
Then ’

(2.19) > d; = > e: = q(O‘z + 32) ,
] i

where Gé is the standard deviation of the e's and e their mean.

Also,

o

(2.20) (%,\/d—l)d = (% ei)2 _ qz -2

From (2.18), (<.19) and (<2.20), the condition that aggregation be

advantageous is that
2 —=2
. K{(1, 2, ***, q) q e . _4a
(2.21) K < T
q(oé + e ) Ve o+ 1

where V = o_/e is the coefficient of variation of the e's. The
expression 1/ (v¥ + 1) indicates the dissimilarity between the q
considered commodities with respect to their storage cost and
purchase conditions. Condition (2.21) states thal aggregation is
advantageous if the joint cost of ordering the set of q commodities,
multiplied by a "cost—dissimilarity index," is less than q times

the cost of ordering any one commodity separately.
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2:1 a problem analogous to that of optimal aggregation of
commodities into groups, is that of the optimal number of storage
depoté; or more generally, the optimal (bivariate) distribution
of orders among the givers of orders {depots) and thé receivers

of orders (manufacturers and transporters). This presupposes the

knowledge of the storage cost — — ch say — — of the hth order—giver
and the knowledge of the big—lot price reduction — — b, say — —
of the kth order—receiver; these result in a Jjoint frequency

distribution of & parameter dhk’ analogous to the parameter di in
(2.15). Some fundamentals of this problem, given certain parameters

of utility and cost, were treated by Tompkins in [ 8 ].
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3. -4 Static Model with Uncertainty

3:A Suppose an organization wants to choose the level z > O
that the stock of a certain commodity should have at the beginning
of a given period, in order to provide for the demand (recuirements)
that will occur during that period. We shall choose the time unit
to be e~ual to the length of this reriod, and use the notations of
Section 2. Thus x > 0 will denote the demand during the period.
However, x will now be regarded &s ¢ random variable., we shall
suppose that the organization knows the cumulative distribution of
demand F(x) (but see 7:D below). The utility, to the organization,

of delivering g units of commodity will be

(3.1) az) *ag (& constant).

The delivery during the period is a random variable: E, equals x or
z, Whichever is smaller. Hence the expected utility derived from

satisfied demand is
2 Z
(3.2) az 1 — F(z)] + a(jo x dF(x) + ag -
0
We shall assume that the amount to be spent in purchasing Z; units is

(3.3) Clog =0, T) + K5 by >0, by 20;

so that as in Section 2, the purchase price is either constant or
linearly decreasing with the amount purchased. As betore, the cost
of handling en order is denoted by K but this term will not play any

furtler role in the static model. However, we assume here that the
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whole stock z is to be purchased (so that always Z; = z), and that

no utility is derived from satisfying demand after the period's
end. Finally, the cost of carrying over our period the stock which

has level z at the beginning of the period, will be assumed to be
(3.4) const. + cz .

Then, apart from a "depletion penalty" which we shall introduce
in 3:B, the net expected loss (the negative of net expected utility)
is

2
(3.5% const. + z{(c+ by —byz) — az[1—F(z)]—aJ(’) x dF(x) .

3:B We now define ] , the "depletion penalty," as follows:
if x € z, there is no unsatisfied demand, and [ = 0; but if x > z,
the organization would be willing to pay an amount [l > 0 to satisfy
the excess, x — 2z, of demand over available stock.

We assume the penalty function as given. The organization —
whether commnercieal or noncommercial — has & general idea of the value
it would attach to the damage that would be caused by the non—
availability of an item; it knows the cost and the poorer performance
of emergency substitutes. The penalty for depleted stocks may be
very high: "i horse, a horse, my kingdom for a horse," cried
defeated Kichard IIi. |

3:C Note that, in the case of a commercizal enterprise, an
independent penalty function T = T{x — z) need not be introduced.

It can be replaced by considerations on "losing custom," as in the
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following model. Let Ft be a Poisson distribution of deman@\for
the period (t, t+1). Its mean,'/At, is proportional to the
probability that a member of a large but finite reservoir of
customers will want to buy during that period. /Zt eguals /lt41
if the demand during (t—1, t) was satisfied. But if that demand
was in éxcess of the then available stock, /Lt is smaller than
ﬂ%_1, by an amount proportional to the unsatisfied demand, as some
of the disappointed custoners will drop out of the market. The
problem is to maximize total expected utility over a sequence of
periods (0, 1), (1, 2), ***, if the initial distribution F, is
given. .Such a dynamic model wbuld be more complicated than the
cne we are going to treat in Sectious 4 -7.

3:D We shall assume

T = 4+ B(x —12), if x> z,

T =0 otherwise,

where A, B are non—neguative constants, not both zero. Then [ is

a random variable, with expectation

m

(3.6) (4~ Bz)[1 — F(z)] + Bf x dF(x) .
Z

Accordingly, the expected net loss, takiﬁg account of expected
penalty; is the sum of the expressions (3.5) and (3.¢) and ecuals,

apart from & constant,

Z
(3.7), z{c+by—b,z)+ a1 —F(z)]—(B+a)z[1—F(z)]— (B+ a)fo x dF(x)

= L(z) ,
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say. The stock level z = z¥ is optimal if L(z*) < L(z) for every
z. Suppose the distribution function F(x) possesses a differentiable
density function f(x) = dF(%)/dx. If the absolute minimum of L is

not at z = 0, it will be at some point satisfying the relations
% 2 2
dL(z )/dz = 0, d L(z*)/dz > 0,

which imply that

%

(3.8) [c+ bo-—2b1z*] — uf(z7) = (B+ a)[1-F(z)] = 0,

(3.9) —2b, — af'(z") + (B+a)f(z") > 0.

3:E In the economist's language, the first bracketed term in
(3.8) is the "marginal cost" (of buying and carrying an additional
unit in stock); the remaining two terms yield the "marginal expected
utilit&."

It is seen from (3.¢) that the optimal stock 2" is determined
by the following "physical data," or "non—controlled parameters":

1) the demand distribution function F(x); 2) certain utility and

cost parameters: (c + bo), b, 4, and (B + a). If, in particuler,

b1 = 0 (i.e., the economy of big—lot purchases is negligible),

these parameters reduce to two: a/(c + b,) and (B + a)/(c + byl

To simplify further, for the sake of illustration, suppose also

that B = a = 0: that is, the penalty’is either zero or A, independent
of the size of the unsatisfied demand; and utility derived from the
functioning of the organization does not depend on the amounts

delivered. Then (3.8), (3.9) Lecome
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(3.10) £(z%) = (c + by)/A;  £1(2%) <o0.

A graphical solution for this case is shown in Figure 2. (Note that

2 .
f'(z°) <0 but £'(z') > 0; z¥ is the best stock level, but z' is not.)

f(x)

(c+b0)/A‘ e

* —

z! z X

Figure 2

3:F In some previous literature (Ref. [ 6, 3 ]), the decision
on inventories was related, not to utility and cost considerations,
tut to a preassigned probability (1 — F(z)) that demand will not
exceed stock. The choice of thle probability level 1 — F(z) depends,
of course, on some implicit evaluations of the damage that would be
incurred if one would be unable to satisfy demand. In the present
- paper, these evaluations are made explicit. On the other hand,
since the value of the parameters such as ., B, a can be estimated
only in « broad way (at least outside of & purely commercial
organization, where utility = dollar profit, and where models such
as that of 3:C can be developed), it is a welcome support of one's
judgment, to checx these estimates by referring to the corresponding

level of probability for stock depletion. For example, if the
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distribution on Figure 1 were approximately normal, then to assume
that peﬁaity A is 100 times the marginal cost c + bO would be
equivalent to prescribing that the shaded are& measuring the
depletion probability should be 0.3%; to assume that A = 10
(c + by) would be equivalent to making depletion probability = 5%,
etc.

3:G In the more general case, when B + a > 0 (but still
b1 = 0), a given optimal stock level z*, and consequently a given

*
probability of depletion 1 — F(z ) is consistent with a continuous

set of values of the pair of parumeters: A/(c + by) = a',
(B + a)/(c + by) = B', such as would satisfy the linear equation
(3.8). For example, if F(x) is normal, then an optimal stock
exceeding the aQerage demand Ly two standard deviations of demand
(and, consecuently, a depletion probavility of 2.3%), will be
required by any pair of values of A', B' lying on the straight line
intersecting the A' -- axis at 13 and intersecting the B! — - axis
at 44; while an optimal stock exceeding the &verage demand by three
standara deviations (and, consecuently, a depletion probability of
0.19,), will correspond to a straight line intersecting those axes
at 228 and 740, respectively. Thus & set of contour lines helps to

choose an interval of optimal stock values consistent with a given

region of plausible values of utility—and—penalty parameters.
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4. A Dynamic Model of Uncertainty: Problem

4:A The model described in Section 3 may be called a "static"
one. We shall now present a "dynamic" one. In this model, the
commcdity can be orderéd, and reordered, at discrete instants
G, 8, ", t8y, °++, where 9, is a fixed constant (but see 7:B).

We can therefore use 60 as a time unit. Let Xy be the demand over
the‘interval (t, t+ 1). Assume the probability distribution of

demand F(x) to be independent of t. Denote by Yy, the stock available
at instant t, not incluaing any replenishment that may &arrive at

this instant. Denote by Z¢ the stock at t including the replenishment.
Lenote by Oy the amount ordered at time t. Let the time between the

ordering ana the receiving of goods ("pipeline time") be T. Then,
(Lo1) vy = max(z,_, = x,._q, O), t =1, 2, <,
(4.2) Zgaw T Yeaw ¥ Oty

In generel, T is a non—negfative random variable. We shall, however,
assume T = O to simplify tle analysis at this stage. Then (4.2)

becomes
(4.3) Zy = Yyp * Op -

Choose two numbers S and s, S > s > 0, and let them define the following

rule of action:

(oaay) If yp>s, o, =0 (and hence z, = y.),

if yo S8, op =5 —yg (and hence z, = S).
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Figure 3 shows the sort of curve that might be obtained for stock

level as a function of time if such a rule is adopted.

ZA

Figure 3

Figure 4 shows z, as a function of Yy
Zy

Figure L4
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v

4L:B We shall assume (as we have done in Sections 2 and 3) that
the cost of handling an order does not depend on the amount ordered.
Let this cost be K, a constant. Let the depletion penalty be A, a
constant: compare (3.4), with B = 0. Let the variable cost of
carrying a stock Zy during a unit of time be c, as in (3.4). Assume
the purchasing price per unit of commodity to be independent of the
amount bought, and equal to the marginal utility of one unit (i.e.,
iﬂ the notation of sub—section 3:A, b1 = 0, bO = a). That is, the
utility of operations of the agency, in excess of the expenses paid
for these operations, is assumed constant, apart from the cost of
storage and of handling orders. In the notations of 3:A, this
constant is ag» while K and c¢ denote, respectively, the cost of
handling an order (of any size) and the marginal cost of storage.

Qur assumption is an admissible approximation in the case of some
non—profit agencies. It would be certainly both more general and
more realistic to make the marginal utility of an operation differ
from its purchasing‘price as was the case in our static model. But
this will recuire further mathematical work (see 7:4).

L:C If Yo is given and values S and s are chosen, the subsequent
values Ye form a random process which is "Markovian"; see Feller [57,
Chapter 15. That is, the probability distribution of Yeatr given the
value of Yy is independent of Ye—qs "7y Yoo During the period
(t, t+1) a certain loss will be incurrec whose conditional expectation,

for a fixed value of Yio We denote by ‘Z(yt). Under the simplifying

assunptions of sub—section 4:B,
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cy, + A1 - Fly.) fory, > s
(4.5) Ly =4t T F] B
¢S + a1 — F(5)] + K for y, <s

Thus the function .l(yt) involves S and s as parameters and is

constant for Yg S Se Note that

(4.6) L) = Jis) + K .

The unconditional expectation of the loss during (t, t+ 1), that is,

the expectation of l(yt), with y, as a random variable, will be

denoted by
(4.7) L= Lty .

We shall write lg(yo) rather than,lt only when we need to emphasize
the dependence of Zt on the initlial stock level. Clearly jo(y) = Liy)
for every value y of Yo+

FFigure 5 shows a possible type -of graph for‘Z(yt).
Ly

. ’///////////
-

-~

|
|
|
1
|
|
|
|
|
l
|
|

S

<V

Figure 5
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4:D We now introduce the concepts of a discount factor, O,

and of "present value" of a loss. If the value of Ve is given,
0]

the present value at time to of the expected loss incurred in the
interval (to tL, ty vt 1) is CItECZ(ytO+t)] - dylt(yto). When
maximizing expected utility, the policymaker takes imto account the
"present values'" of losses, not their values at the time when they
are incurred. In commercial practice, X is equal to unity minus

an appropriate market rate of interest. In non—profit practice, O
would have to be evaluated separately. Later it will be shown,
however (see Section 5:B), that, under certain conuitions, the optimal
values o! the parameters S, s can be found for (L essentizlly equal

to 1.

If we now define the function

Liy) =4 (y) +al,(y) + osz(y) A oo

we see from definition (4.7) that L(yt) is the present value at time t
of the totzl expected loss incurred during the period (t, t+ 1) and
all subsequent'peridds wlien Yy is given. By definition L(y) involves
the parcmeters S and s; and the policymaker fixes these parameters so
as to mininize L(yu).

L:k ilow suppose yozis given. For a tixed value of Yy the present

value of the total expected loss over all periods is
X 2 3 r s 00
(bg) Llyg) +allyy) + 075, [y ]+ 0By Ulyq)] + :

where we Luave used Ey El(yr)] to denote the conditional expectation of
1 .
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I(yr), given the fixed value Yq- Now
By [iy.)] - £_,ly), r=1, 2, 00~

because of the fact that if y, is fixed, the subsequent value Yoo
r =1, 2, °°*, is connected with Y4 in the same manner that Y
is connected with Yo if ¥4 is not specified. Therefore the expression

(L.8) is equal to
(4.9) - l(yo) i OJ%(Y1) + Ofl1(y1) + aé[2(y1) + ey =
Lyg) + ofholyq) + al,(y1) +oa2,éz(y1) s eed] =

Uyg) +aLiy,) .

|

The total expected loss over all periods from the beginning, which by
definition is L(yo), is the expectation of the expression in (4.9)

with Y4 regarded as a random veariable. Hence

(4.10) Liyy) = Llyy) +ae[Liy, )] . .

To express the expectea value of L(y1) a3 a function of Yo We note that
it yg <'s, then z; = 5 and y,; = max (S—-xo, O); while if y5 > s, then
Zo = Vg and y, = max (yU - Xy O). Thus

S
(L.10Y) E[L(y;)] =fo L(s—x)dF(x) + L(0)[1—-F(8)] for yy <'s,

y
E[L(y,)] =f0—o L(y, —x)dF(x)+ L(0O) K —-Flyy)] for yy > s.
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(Notice that from the way we have defined the rule of action,
L(y) is constant for O <y < s so that L(0) is unambiguously
defined.) Putting y,y =y we obtain from (4.10) and (4.10% the

equations

S
(4.11)  Liy) = L(y) +ocfo L(S— x)dF(x) + OL(0)[1 — F(S)] if y < s,

y
(4.12)  Liy) = Ly) +ocf L(y—x)dF(x) + QL(U)[1=F(y)] if y > s.

Our problem is to find the function L(y) that satisfies (4.11),
(4L.12); &nd to minimize L(y) with respect to S, s.
It is not difficult to show that L(y) and Zt(y) {for each t

are measurable functions of y, but we leave such technicalities

aside,
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5 a4 Dynuamic Model: Method of Solution

5:4 In treating the equations (4.11) and (4.12) we drop for
the time being the assumption that F(x) has a density function
and assume only that ﬁhe random variazble x cannot take negative
values. In order to take care of the possibility that F(x) has
& discontinuity at x = 0O (i.e., a rositive probability that x = 0)
we adopt the convention that Stieltjes integruls of the form
(jg)( JdF(x) will be understood to have U— &s the lower limit. We
continue to assume that Z(y) is given by (4.5) vut it is clear
that a similar treatment would hold for any ncn—negative function
Ly} which is constant for ¢ < y < 8 ana satisfies certzin obvious
regularity conaitions.

Since £(y) and L(y) are independent of y for u <y < s, (4.11)

tells us simply that

' S
(5.1) L(u) = 2(0) +0LJ; L(S—x)di(x) +0L(0)[1 = F(5)],

while putting y = S in (4.12) gives

s
(5.2) - L(s) = l(s) + oaf L(S—x)dF(x) +od(u) 1 = F(s)].
0

Subtracﬁing‘(5“2) from (5.1) we obtain, using (4.€),
(5.3) L(o) — L(s) = K,

an expression which is in fact obvious since if the initial stock
is O we immediately order an amount S &t & cost K for ordering.

We snzll solve the equation (4.12) for the function L(y), considering
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L{(U) as an unknown parameter, and then use (5.3) to determine L(O).

On the right side of (4.12) we make the substitution
P y—s Y

(5.4) f L(y = x)dF(x) =J’ L{y—s)dF(x) + L(u) dF (x) ;
: C 0] y—s

the last term follows from “he fact that L(y—x) = L(0) when

O < y—=x < s. Now make the change of variavles
(5.5) y—s=na

Liy) = LN+ s) = AN) .
Putting (5.4) and (5.5) in (4.12) gives

(5.6) Alr) = 0+ s) +ab(u) 1 - F( r"+a(/ ACf = x)dF(x), T > 0.

bguation (5.0) is in the standard form of the integral equation of
renewal theory; see, for example, leller's paper {1;]. The solution
of (5.6) can be expressed as follows. Define aistribution functions

Fn(x), n 1, 2, *°°, (the convolutions of F(x)) by

(5.7) Filx) = F(x),

x

! nl BN
F,q(x) = Jo F_(x — u)dF(u) .

Define the function ﬂl(x)

(5.8) H, (x) = zuL“F (x), U< o< 1.
n=1
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It is not difficult to verify that the series in (5.&) converges

for any value @f 0L, less than 1 or not. Putting

(5.9) Rin) = din + s) +ow(o) [t — F(n)],
we can write the solution of (5.6) as

n
(5.10) A = & +f (1 = x)dHy (x)
U

RO ¢+ S " A ( (
= + o J BN — x)dF_(x)
R n=1 0 q n
In terms of L and Z, (5.10) gives

(5.11) Liy) = Aly) +aL(u)[1 = F(y = s)]

y=s
+‘/; {Z(y-—x)+aL(‘(J)D—F(y—x-—s)]}d}{a(x), y > s.

Froua (5.3) und (5.11) we have

[

) oS
(5.12) L(U) — & = A(3) +Jg A5 = x)at, (x)

Y

+a.L<o)f1—v-(s—«)+f“ " _F(S— s —x)]dH_ (x)
L £ S .’u i S X d'x .

In (5.12) ve r.ave a linear ecuntion which we can solve for the

unkriown ~uantity L(Q) which has, as wé shall show, & nonvanishing
coefficient in (5.12). This pives us tae value of L(y) for y < s,
and we can outain L(y) for y > s from (5.11), since every term on

the right side of tlhat ecuation is 1now known.
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The coefficient of L(O) in (5.12) is

S=s
= - - M — - g—
(5.13) 1 G{? F(s S)+f/g (1—F(s—s x)]dHoéx)}

i i ~ OS5 -
1—041—F(S—s) + Ha(a—s)—/o F(S=s—x)dH, (x)

Q 2]
1—Q1-F(S—s)+ > o"F (S—s)— S o"F_,,(5—5s)
n=1 n n=1 n+1

]

(1~ + Hy (s - s)] .

Using (5.13) we obtain
S—s
K+ L(s) + [ As — x)dHy(x)
(5.14) L(0) = Y .
(1 =0 1 + H (S = s)]

Knowing L(y) from (5.11) and (5.14), the next step is to find,
for a -iven initial stock Vo the values of s and S which minimize
L(yO). We shall consider only the minimization of L(0), although
the procedure could be worked out to minimize L(yo) for any initial
stock'yo. The procedure of mininizing L(0O) is not quite so special
as it may appear. OSuppose that for & given Yo the values of s and
S which minimize L(yo) are . denoted by s*(yo) and S*(yo). If
sT(0) > 0 ané if s*(yo) and S*(yo) are coutinuous functions of y,
(a point which we have not investigated mathematically), then

:‘,:(

s*(yu) = s (U) Tor sufficiently small Yo+ To see this we write

L(y) = L(y; s, S)
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to indicate the dependence of L on s and S. Let I = [a, b] be

a closed interval with 0 < a < s*(O) < b. Take Yo small enough

s
so that s (yo) is in I. Now if Yo is sufficiently small

* )
Lvgs s (yg), 8 (yy)) = mirlx Llygi s, S) =
sé€

Q

o02>s

K + min L(3; s, 5),
sel
S>s
which is independent of Yo Q-E.D.
In 5:B an optimization criterion will be given which is
independent of the initizl level Yo
We now re—introduce the assumption that F(x) has a probability

density which is continuosusly differentiable,

-

X
F(x) =J:) £(t)dt .

wWe recall from (4.5) that [(y), for y > s, is given by

Ly) = a[t —F(y)] + cy .

Consider the minimization of (5.14) with respect to s and S.
First we consider the case where S — s is fixed. The denominator
of (5.14) involves S and s only as a function of S — s. Wwe therefore
have to minimize the numerator of (5.14) with respect to S, subject
Lo Lhe counstraint that 8 is at least as great as the fixed value of
- -

S — s. If the minimum value does not occur for S = 5 — s (i.e.,

s = 0), it occurs at a value of S for which the corditions
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S—s
(5.15) ¢ — af(s) +L/Z) fe = af(s — x)JaH (x) = 0 ,

: 5—s .
(5.10)  —af'(s) —f ALT(S = x)dHy(x) > 0,
N 0]

hold. It should be notea that K does not enter into (5.15) and

(5.16).
If we drop the requirement that S — s be fixed, then s* and

i) b1
< S, occur at a

S*, pfovided they satisfy the condition U <s
point where equation (5.15) holds, together with the equation
obtained by setting the derivative of (5.14) with respect to S — s
equal to O, taking the appropriate second—order conditions into
account. we also need here the assumption that Haﬂx) is the integral
of a function.ha}x),

,7X
H (x) =JO ho(_(t)dt .

[

“hen differentiation of (5.14) with respect to 3 — s gives, setting

the derivative equal to O,

S—s
(5.17) A[F(S) — F(s)] = c(s —s) + i +L/; (e—af(S=x)]H (x)dx .

Presumzovly the minimization of (5.14) would be accomnplished in
practice by numerical methods.

5:8 So far we have considered QL ac an arbitrary parameter,
It is clear that if we let OL —> 1, keeping s and & fixed, the
quantity L(U) becomes infinite. However, as we shall see, the

quantity (1 — )L(0) approaches a finite limiting value whose
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significapce can be explained as follows. Suppose that levels s
and S have been fixed and that Yo is given. We have mentioned that
the quantities Yi then form a Markovian ranaom process. Moreover,
the grobability distribution of Yy @8 t —> w®, approaches a fixed
limiting aistribution which is independent of Yo (See Feller,[B],
Chapter 15, for the relevant theory when F(x) is a step—function.
The general case is more difficult and the proof recuires restrictions
on F(x), which are, however, not of practical importance. See
Doob [2].) This implies that jt’ the expected loss in the interval
(t, t+1) approaches & limiting value_}.}00 which is independent of Yo
(The losses during successive time intervals form a sequenée of
bounded random variables.) As we shall see, we can find the value
of 1;. Then if we do not want to use a discount factor <&, one way
to proceed is to pick s and S so as to minimize XL. This is almost
ecuivalent to minimizing the total expected loss over a long finite
time interval.

another way to look at the situation is as follows. The limiting
distribution of Ve for large t is a "stationary distribution"; i.e.,
5833 Yo has tnis distribution, instead of being f{ixed, then Ve has the
same uistrivution for every t. The expected loss during (t, t+ 1),
if Y¢ has this distribution, is just 2;.

Since
o) = ,J’O(O) + oz[,(o) +O!.’£12(o) oo,
and [t(u) — ZD as t —> o, we have

(5.18) Lo)(1-a) = ]O(o)+a[l1(0)—/”O(o)]+of[}{2(0)—/_1(0)] % oao
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Thé‘series
Lot0) + [l (0) = £y(0)] + [h(0) = f1(Q0)] + +-

converges to the value l; and therefore, by a standard result of
anulysis, we have from (5.18),
lim L(O)(1 - o) =1 .
A—>1 @

In order to determine,fm, we can then multiply the right side of

(5.14) by (1 — Q) and let O —> 1, obtaining

S._
K + A(s) +f U5 - x)dH(x)

- Q
(5.19) A = PP

where H(x) is defined by

(o]
H(x) = 1lim H (x) = F_(x) .
i R n§1 nt

(It is not hard to see that the step

ol

)S—s‘ e
lim J s — x)aH_(x) =J /(s — x)dH(x)
oa—>1Jo oL 0
is justified.)

We can then minimize the function in (5.19) with respect to s
and S. It should be noted that f; is of course independent of the

initial stock Yo
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6. 4 Dynamic Model: rxamples

we consider now some examples for a particular function F(x).
It is aavantageous to use a function whose convolutions can be

written explicitly. From this point of view functions of the form

v k x -
(be1) . F(x) =TI'%—“1—)—'-JZ) uk—1 e Au du, k>0, (>0,

are convenient ((k-—1)! is k) if k is not an integer) since by
proper cloice of f3 and x we can give any desired values to the mean
and variance,

x=k/g, x -®° -xp,

and since Fn(x) is then given by
F (X) = f nk—. Bu du .
n (nk — 1)

The function Ha}x) is then given by

x —fu nk(xp nk—1
(L.2) H (x) = Jp e 21 2 H du .
: & 0 n=1 (nk — 1)!

.
1

If k is' un integer the summation in (0.2) can be performed explicitly

giving
| 1/k - A
oL X —ﬂu £u
(6.3) H (x) = fi-——-bf :Z w; e ik )du
a : k 0 ]
where a%, "',(Uk are the kth roots of unity. For example, if k = 2,

we have G, = -1, ab = 1, so that




£(x)
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H (x) = %@Lx e“ﬁu Ce'@ﬁu— e_ﬁﬁu> du

It is instructive to find the value of ,(m for the simple case

= ¢ *. In this case, from (6.3),

x
H(x) =(./2) e Y(e%)du = x

and we have

S—s

K+ A(s) + LS — x)d
1,: + ‘/’; xx=

1 +38 -8

- S—s
K + ¢S5 + ae + L

rc(S - x) + Ae—"ﬂqu

-

+ S5 — s

- <
A+ cS + une ” + c(S5—5s) —-%(S-—s) + ae

1 + S — s

Letting S — s = A, we see that this expression, for & fixed value

S = log, (%)— log (1 + A) * A -

of A, has its minimum (unless it occurs when s = 0) when
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7. Further Problems and Generalizations

To make the dynamic model more realistic certain generalizations
are necessary. Wwe shall register them in the present section, as
a program for further work.

7:A Of the severul cost and utility parameters used in the
certainty model of Section 2, anc in the static uncertainty model
of Section 3, we have retained in the dynamic uncertainty model
only three: ¢, the marginal cost of storage; K, the constant cost
of handling an order; and A, the constant part of the depletion

penalty. e have thus dropped the parameters &, by, b and B.

19
The meaning of the first three of these was discussed in sub—section
4:B. It can be presumed from the ecuation (3.8) of the more
cdeveloped static model that if we similarly developed the
aynamic model, ¢ could be easily replaced by (c + bo); but that
(B + &) would form an adcitional parameter, altogether excluded
from our simple aynamic model. Difficulties of another kind will
occur when b1 >0, i.e., when therc are economies of bLig—lot buying,
whiich are due not to Lhe auavantage of lLandling one order instead of
many, obut to the cheapness of transporting (and procucing) large
quantities. This will obviously modify the rule of action (4.4),
as the loss that we irtend to minimize will depend on (S — yt),
the size of the replenishment order.

7:B  Another direction in which the aynamic model must be
generalized to Lecome realistic, corresponds Lo sub—section 2:F of
the certainty model. The cost of ordering may be a periodic function

of time, due to existing schedules of transportation and administrative
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routine, In our dynamic model, orders (zero or positive) can be
given at thne beginning of each pefiod of length 60 = 1, the cost

K of a positive order being constant. Suppose, however, that
instead, K = Ko at instants o, mGO, 2m60, *++, where m is an integer;
and K = K* at all other instants, with Kt > Ko. For example, if

60 is one day, meo may be one week, and instant O is the first
tonday. Given the other parameters, it may or may not be advantageous
to place orders on kMondays only. Moreover, the integer m may itself
be a controlled variable: e.g., one may have to decide whetner to
make the orders daily, weekly, or monthly, & month not being an
integral multiple of a week, &na the cost of a monthly order being
different fromn t:at o a weekly order.

7:C The aggregation problem, treated for the case of certainty
in tne last three sub—sectlons of Section 2, arises of course also
in the case of uncertainty. The problem is important because the
nuncer ol itews hanuled Ly any .arge organization (excepting possibly
sowe Li, hly specialized ones) ig usually very large; and, usually,
only large organizations arc ecquipped to implement an inventory
policy approxinating the optiaal one, since it presupposes either
a4 good anowledye ol the relevant paraueters, or their statistical
estimation.

7:D Ve hLave assumed the cistribution F(x) of cemand per unit —
perioc Lo te anown — 'resumably estimated from oprevious samples.
aActual estimations of tnis uistrivbution were carried out by bkry for
the Bell Televotone Coupany (see wilson [10]), and by Kruskal [7]

witl. the material of tl.e mediecal branci. of the U. S. Navy.
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Inventory policies based on suc¢h estimates can be improved
as the operations are going on. The logic of such "sequential™
procedure can be outlined as follows:

Using the dynamic model of Section 4 with s and S as the
controlled parameters, now permitted to vary with time,'denote by
M= PS(t),s(t);¥] the expected loss over an infinite period,
given the non—controlled parameters A and K, but with the distribu—

tion F(x) unknown. Denote by X, = (x1,..., ) the secuence of

Xt—1
past observations on demand (fulfilled or not). Find two functions

S = St (Xt) and s = s (Xt) that would produce the best results.

t
The best results can be defined as follows. The expected loss

t
function F, and can be written as the functional on 5, s, F,

depends on the functions St’ s, and on the unknown distribution

S= Pls, (X ), sy (X.)5 F] = M8, s; F) .

t t

It is assumed that the distribution F belongs‘to some class
specified in advance. The criterion for the most appropriate

choice of policies.in cases such as this are still a matter of
dispute. One suggestion, inspired by wald's statistical writings,
is that Nature should be visualized as having chosen F so as to
maximize the loss; the aim of the inventory controller — or any
other'planner — should then, in accordance with the theory of games,
be to minimize the maeximum loss. Professor Leonard J. Savage has
pointed out that it would be better to regard the penalty to be
assessed against the planner as not tle totzl loss but only that

part which is due to his ignorance, the "regret". This is defined
as the difference between the minimum expected loss in the case
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tion are its opponents and have the choice of demands Xe s
within a certain range. If tliey are recuired to choose F at the
beginning of tke operation, then the proper rule is to choose

the functions S, s so as to minimize

max M(S, s; Fi.

However, there are other possibilities. For example, the opponents
might be permitted by the rules of the game to choose Xy at each
time t. Then the specification of the game will have to be com—
pleted By a statement of the enemy's information pattern and the

costs to him, if any, in choosings the various values of X,
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that the organization knew the distribution F, and the expected
loss resulting from its actual decision. Given F, the minimum

expected loss 1is

min M(S,s; F) =/“¥ (F), say .
S,s
The "regret" is

r =/M(S,s; F) - M(F) = r(S,s; F), say.

* *
The optimal stock control functions S (Xt)’ S (X,) and the best

o, i
estimator of the distribution F = Fg (x, X,) must satisfy the

condition
% * X ) . :
r(S, s ; ¥ ) = min max r(S5, s; F) .
S,s F
Another proposal, much more traditional in probability theory, is
to assume that the planner has some psychological probability
distribution G over all possible distributions F, representing his
relative degrees of belief in their occurrences. The distribution
G reflects past experience and general Jjudgment. Then the optimal
procedure is to choose the functions 5 and s so as to minimize the

expected loss,

,\
J’ MS,s; ¥)dG .

Whether some kind of minimax criterion is adopted or a psychological
probability approach is taken, it is easy to see that the solution
will call for functions S, s which really depend on trhe observations

Xt . However, the determination of these functions is still an

unsolved problem,

Another case is that in which the "customers"™ of the organiza—
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